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PROGRESS AND PROSPECT OF OCEAN COLOR
REMOTE SENSING IN CASE 2 WATERS

REN Jing-ping's ZHAO Jin-ping’
(1. Institute of Oceanology, CAS. Qingdao 266071, China; 2. Sewnd Institute of
Oceanography, SOA, Hangzhou 310012, China)

Abstract: case 1 waters and case 2 waters are different water types defined by optical characteristics. case 1
water is clear, open-ocean water, and case 2 is generally coastal, higher productivity, turbid water. Ocean color
in case 2 waters is influenced by three major components of the water, namely phytoplankton pigment, suspend-
ed sediment and yellow substance. case 2 waters are more complex than case 1 waters in their composition and
optical properties. To date, remote sensing of ocean color has focused largely on case 1 waters. It has been dem-
onstrated that the standard algorithms in use today for chlorophyll retrieval from satellite data work well in case
1 waters, but they often break down in case 2 waters. With the advent of the new sensors and the emergence of
the new algorithm in parallel, better interpretation of ocean color in case 2 waters are under intensive investiga-
tion.

Technical requirements for ocean color measurements are review ed first according to the spectral signatures
and ocean processes in case 2 waters. The minimum requirements for ocean color sensors designed for case 1 ap-
plications are introduced. Ocean color sensors for case 2 w aters must meet all the requirements for case 1 waters
as well as the special requirements for case 2 waters. (DIn the visible domain, additional spectral channels are
required for the measurement of chlorophyll fluorescence, suspended sediment, yellow substance and shallow
bottom reflectance. In the near infrared region, one or more additional channels are required for atmospheric
correction over shallow or turbid coastal waters because of the non-zero water leaving radiance beyond 700 nm.
@DBecause the range of remote sensing reflectance in case 2 waters is larger than in case 1 waters, the sensitivity
and signal-to-noise ratio must be increased. In addition, ocean color sensors must not saturate over clouds or the
coast, so very high dynamic range is required. @ More temporal resolution and more spatial resolution are
required to monitor the dynamical processes of the coastal zone. No single existing or planned satellite sensors
meet all those requirements. Monitoring of coastal waters must involve sensors aboard various platforms, wheth-
er they are spaceborne, airborne, in situ or land-based.

Development of retrieval algorithms is then elucidated. With at least three groups of different color produc-
ing components, all varying independently with local and seasonal variations, remote sensing in case 2 waters is
a non-linear, multivariate problem, and the algorithms must be designed accordingly. The algorithms are being

developed;toward treating the ocean-atmosphere system: as a_coupled system, retrieving aquatic properties based
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on theoretical models and introducing new and powerful mathematical and statistical approaches to solve non-lin-
ear, multivariate problem. Atmospheric correction in turbid coastal waters is complicated by the occurrence of
non-zero w ater leaving radiance beyond 700 nm. There are two approaches to correcting for the effect of the near
infrared contribution of water leaving radiance to the atmospheric correction. One is to use a coupled hydrological
atmospheric model to calculate the atmospheric path radiance iteratively. Another is to apply the aerosol type ob-
served over adjacent, less turbid waters to the turbid water pixels. Inverse techniques can also be used to esti-
mate simultaneously in-water constituents and aerosols. Bio-optical algorithms, including empirical approaches
and model-based approaches, are reviewed. Em pirical algorithm is successful in case 1 waters, but its accuracy is
usually relatively-low in Case 2 waters. Model-based algorithms use bio-optical models to describe the relation-
ship between water constituents and spectra of water leaving radiance and reflectance, and use radiative transfer
models to simulate the light propagation through the water and the atmosphere. There are four major groups of
algorithms developed to date, the algebraic methods, the non-linear optimization techniques, the principal com-
ponent approach and the neural network approach. The algebraic method is a semi-analytical model, and is the
simplest of the model-based approaches. The non-linear optimization directly invert the forward model to esti-
mate simultaneously all the concentrations of the aquatic constituents by minimizing the differences between the
calculated values and the measured radiances using such minimization techniques as the simplex algorithm, Lev-
enberg-M arquardt method and the Gauss-New ton algorithm, efc. It doesn’ t depend on a pre-defined, simulated
data set. The complexity level and retrieval accuracy are the highest among the four approaches. The principal
component analysis of simulated data is introduced to deal with the high correlation betw een signals from differ-
ent wavebands in case 2 waters, determining the spectral dimensionality of the data and the weighting coeffi-
cients of each spectral channel. Atmospheric correction is unnecessary and the model can be implemented at high
computation speed. The neural network is a powerful approach to the retrieval of water constituents and also to
atmospheric correction over case 2 waters. The disadvantage is that the design of the training and test data set
and the training procedure require extensive ex perience. In summary, the algorithms are still far from being op-
erational, and significant improvements are needed.

Finally, key issues for ocean color remote sensing in China seas are discussed based on the specific character-
istics of the coastal waters. Most of the East China Seas belong to case 2 waters, and the optical properties of the
shallow, turbid waters are very complex. It is well recognized worldwide that the turbid atmospheric correction
over East China Seas is a difficult task, and new algorithms are needed to address the challenge. Up to now, we
know little about the Inherent Optical Properties in case 2 waters, and in situ measurements are necessary both
in the development of algorithms, as well as for subsequent validation of the retrieval results from satellite data.
Bottom reflectance, bottom characterization and bathy metry must be taken into account when developing re-
trieval algorithms in optically-shallow waters. The optical properties of coastal waters vary greatly over time and
space. Regional algorithms optimized for local conditions are required to better interpret ocean color in China
Seas.

Key words: Ocean color remote sensing; Case 2 waters; Retrieval algorithm.



