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(acrylonitrile butadiene styrene, ABS),
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Fig 4 Original Near Infrared spectra of microplastics
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6 n estimators, leasning rate, max depth, gamma CV
Fig 6 CV average accuracy of n estimators, learning rate, max depth, gamma
7 SVM  XGBoost
Fig 7 SVM and XGBoost confusion matrixes
1 XGBoost SVM
Table 1 Comparison of operation results between XGBoost and SVM algorithms
Microplastic Precision of Recall of Fl-score Precision Recall of Fl-score
category XGBoost XGBoost of XGBoost of SVM SVM of SVM
ABS 1. 00 1. 00 1. 00 1 00 1. 00 1. 00
EVA 1. 00 1. 00 1. 00 1. 00 1. 00 1 00
PAN 0. 93 1 00 0. 97 0. 82 1. 00 0. 90
PBT 1. 00 1. 00 1. 00 1. 00 0. 84 0. 91
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1
PC 0. 86 1. 00 0. 92 1L 00 0. 89 0. 94
PCL 0. 91 1. 00 0. 95 0. 95 1. 00 0. 98
PES 1. 00 1 00 1. 00 1. 00 1. 00 1. 00
PET 1. 00 0. 87 0. 93 0. 85 1. 00 0. 92
PLA 0. 95 1. 00 0. 98 1. 00 0. 76 0. 86
PMMA 1. 00 0. 94 0. 97 0. 94 1. 00 0. 97
POM 1. 00 0. 83 0. 90 0. 88 0. 96 0. 92
PP 0. 95 1. 00 0. 97 0. 90 1. 00 0. 95
PPO 1. 00 1. 00 1. 00 0. 84 0. 89 0. 86
PPS 1. 00 1 00 1. 00 1 00 1. 00 1. 00
PS 0. 90 0. 90 0. 90 0. 95 0. 90 0. 93
PTFE 1. 00 0. 95 0. 97 1. 00 0. 95 0. 97
PVA 1. 00 1. 00 1. 00 1. 00 0. 95 0. 97
pvC 0. 94 1. 00 0. 97 0. 94 1. 00 0. 97
SBS 1. 00 1 00 1 00 0. 95 1. 00 0. 98
TPU 1. 00 1. 00 1. 00 1L 00 0. 81 0. 90
Fl-score SVM . .
SVM XGBoost .
3
)
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Fig 8 Accuracy score, precision score, recall and Fl-score of XGBoost SVM °
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10-fold cross validations of XGBoost and SVM

References

(1]
[2]
[3]
(4]

[5]
[6]
(7]

[8]
£9]

Velimirovic M, Tirez K, Voorspoels S, et al. Analytical and Bioanalytical Chemistry, 2021, 413(24); 7.
Michel A P M, Morrison A E, Preston V L, et al. Environ. Sci. Technol. , 2020, 54(17): 10630.

LUO Yong-ming, SHI Hua-hong, TU Chen. et al(
YANG Sijie, FENG Wei-wei, WANG Qing, et al(
), 2021, 41(8): 2469.

s

’

s

, ). Chin. Sci. Bull. (

), 2021, 66 1547.

, ). Spectroscopy and Spectral Analysis(

Sommer C, Schneider . M, Nguyen J, et al. Marine Pollution Bulletin, 2021, 171, 112789.
Liu Haitao, Niu Shuoran, Zhou Ying, et al. Micromachines, 2021, 12(6). 696

LIANG Zi-chao, LI Zhi-wei, LAI Keng, et al(

2020, 27(4): 289.

’

’

, ). Chinese Journal of Hospital Statistics(

Lemoine M, Piriou M, Charpentier A, et al. Small Ruminant Research, 2021, 202. 106469.

CHE Hong-xin, WANG Tong, WANG Wei(

2021, 5(9): 107.

’

’

). Data Analysis and Knowledge Discovery(



3506 42

[10] Huu P N, Ngoc T P. Journal of Robotics, 2021, 2021 3986497.

[11] WANG Xing-yu, LUO Yu, Osawa ( s , ). Hot Working Technology ( ), 2021, http://doi. org/
10. 14158/j. enki. 1001-3814. 20202994,

[12] Hu C A, Chen C M, Fang Y C, et al. BMJ Open, 2020, 10(2): €033898.

[13] LIU Wen-fang, HAN Jun, LIU Yan-feng, et al( . . , ). China Measurement & Test( ), 2022, 48(1):
6.

[14] YE Tao, SI Qiao-rui, SHEN Chun-hao. et al( s s , ). Journal of Drainage and Irrigation Machinery Engineering
( ), 2021, 39(9) . 884.

Study on Rapid Recognition of Microplastics Based on Infrared
Spectroscopy
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Abstract The combination of spectroscopic technology and machine learning algorithm for rapid identification of microplastics
provides great technical support for microplastics” field detection, a new field that has attracted great attention. Nirs detection
technology has the characteristics of fast detection speediness, highly sensitization, damage less, and can be directly detected
without sample pretreatment, widely used in chemical analysis quality detection and other fields. This paper compares support
vector machine (SVM) and Extreme Gradient Boosting (XGBoost), two machine learning classification algorithms based on the
infrared spectrum, to build a classification model for high-speed and effective recognition of microplastics. Acrylonitrile
butadiene styrene( ABS), Polyacrylonitrile (PAN), Polycarbonate (PC), Polyethylene glycol terephthalate(PET), Polymethyl
methacrylate (PMMA ), Polypropylene (PP), Polystyrene (PS), Polyvinyl chloride (PVC), Thermoplastic polyurethane
(TPU ), Ethylene-vinyl acetate copolymer ( EVA ), Polybutylene terephthalate ( PBT ), Polycaprolactone ( PCL ),
Polyethersulfone (PES), Polylactic acid (PLA), Polyoxymethylene (POM), Polyphenylene Oxide (PPO), Polyphenylene
sulfide (PPS), Poly tetra fluoroethylene (PTFE), polyvinyl alcohol (PVA), Styrenic Block Copolymers (SBS) 20 standard
samples of microplastics were collected by using A miniature near-infrared spectrum. In order to prevent overfitting, 1 260
microplastic samples were collected. each sample containing 512 data points. The XGBoost algorithm was used to rank the
importance of the logarithmic data points, and a total of 65 data points which greatly influenced the recognition accuracy were
extracted. SVM algorithm and XGBoost algorithm are respectively used to establish a microplastic fast recognition model for 65
data points extracted after dimensionality reduction, and GridSearchCV is used to select the hyperparameters that have a great
influence on XGBoost algorithm to determine n estimators, learning rate, The optimal hyperparameters for min child weigh,
max depth, and gamma are 700, 0. 07, 1.1, 0. 0, respectively. In order to improve the model’s stability, recognition rate and
generalization ability, a 10-fold cross-validation and confusion matrix were used to evaluate the model. The results show that the
recognition accuracy of the XGBoost model is 97 % , while that of the SVM model is 95%. The accuracy of the XGBoost model is
better than the SVM model. In conclusion, the overall performance of the XGBoost model was better than that of the SVM

model, which provides technical support for rapid identification of actual microplastics.
Keywords Microplastics; Near infrared spectrum; XGBoost; SVM
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